数学手抄报

01
    数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意.古希腊学者视其为哲学之起点,“学问的基础”.另外,还有个较狭隘且技术性的意义——“数学研究”.即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的.

    其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká).

    在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

    数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

数学手抄报图片

02
    基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

    代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

    直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.

数学手抄报大全

03
    现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).

    数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.

    具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).

    就纵度而言,在数学各自领域上的探索亦越发深入.

数学手抄报资料

04
    数学结构

    许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.

数学手抄报怎么做

05
    主条目:数学基础

    为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来.德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献.

    集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具.20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”

数学手抄报内容

06
    数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语

    更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.

    严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或"证明",而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理.今日,数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.

关于数学的手抄报

07
    西方数学简史

    数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念

    大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了.

    更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统.

    古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.

    西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念.

    世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展.

    中国数学简史

    数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.

有关数学的手抄报

08
    中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及

    的思想方法,近现代也有不少世界领先的数学研究成果就是以华人数学家命名的:

    【李善兰恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李善兰恒等式”(或李氏恒等式).

    【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”.

    【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”.

    【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”.

    【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”.

    【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”.

    【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”.

    【王氏悖论】数学家王浩关于数理逻辑的一个命题被国际上定为“王氏悖论”.

    【柯氏定理】数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯—孙猜测”.

    【陈氏定理】数学家陈景润在哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理”.

    【杨—张定理】数学家杨乐和张广厚在函数论方面的研究成果被国际上称为“杨—张定理”.

    【陆氏猜想】数学家陆启铿关于常曲率流形的研究成果被国际上称为“陆氏猜想”.

    【夏氏不等式】数学家夏道行在泛函积分和不变测度论方面的研究成果被国际数学界称为“夏氏不等式”.

    【姜氏空间】数学家姜伯驹关于尼尔森数计算的研究成果被国际上命名为“姜氏空间”;另外还有以他命名的“姜氏子群”.

    【侯氏定理】数学家侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”.

    【周氏猜测】数学家周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”.

    【王氏定理】数学家王戌堂关于点集拓扑学的研究成果被国际数学界誉为“王氏定理”.

    【袁氏引理】数学家袁亚湘在非线性规划方面的研究成果被国际上命名为“袁氏引理”.

    【景氏算子】数学家景乃桓在对称函数方面的研究成果被国际上命名为“景氏算子”.

    【陈氏文法】数学家陈永川在组合数学方面的研究成果被国际上命名为“陈氏文法”.